Press releases

Thursday June 18th, 2020
Neue Forschungsinfrastruktur in Bochum: Center für systembasierte Antibiotikaforschung (CESAR) eröffnet
Download PDF
Neue Forschungsinfrastruktur in Bochum: Center für systembasierte Antibiotikaforschung (CESAR) eröffnet

Gesucht werden strukturell neue Wirkstoffe, die zur Bekämpfung
multi-resistenter Erreger eingesetzt werden können.

continue

Dortmund und Bochum, 18.Juni 2020 – Infektionskrankheiten sind in den Industriestaaten wieder die dritthäufigste Todesursache. Grund sind immer mehr Keime, die gegen vorhandene Antibiotika resistent sind. An der Ruhr-Universität Bochum (RUB) entsteht daher, in Zusammenarbeit mit der Lead Discovery Center GmbH, Dortmund (LDC), in den kommenden drei Jahren das Center für systembasierte Antibiotikaforschung (CESAR). Es soll der Erschließung neuer Wirkstoffe dienen und die Vernetzung mit Akteuren aus Wirtschaft und Hochschullandschaft regional und überregional intensivieren. Der Aufbau von CESAR wird vom Europäischen Fonds für regionale Entwicklung und dem Land NRW mit rund 4 Millionen Euro gefördert. Koordiniert wird das Center von Prof. Dr. Julia Bandow.

Mangel an strukturell neuen Substanzen
Seit Mitte des 20. Jahrhunderts wurden nur zwei neue Antibiotika-Strukturklassen entdeckt; dennoch betreiben derzeit weltweit nur wenige Unternehmen Antibiotikaforschung und -entwicklung. „Eines der Hauptprobleme ist ein akuter Mangel an vielversprechenden, strukturell neuen antibakteriellen Substanzen, die als Ausgangspunkt für Entwicklungsprojekte dienen können“, sagt Bert Klebl vom LDC.

Mit CESAR wird eine Forschungsinfrastruktur geschaffen, in der modernste Geräte für die Suche nach neuen antibakteriellen Naturstoffen und für die Analyse der Wirkung und Wirkmechanismen von Antibiotika eingesetzt werden. Auch werden Kapazitäten geschaffen, vielversprechende Substanzen in ausreichender Menge für Forschung und Entwicklung zur Verfügung zu stellen. Forscherinnen und Forscher der RUB und des LDC bringen komplementäre Expertise in Massenspektrometrie-basierten OMIC-Technologien, Assay-Entwicklung und Wirkstoffforschung zusammen, mit dem ultimativen Ziel, neue, dringend notwendige Therapiemöglichkeiten zu schaffen.

Bekannte und neue Antibiotikaproduzenten beproben
„Ausgangspunkt für die Suche nach bisher ungenutzten antibiotischen Wirkstoffen sind Bakterien, die solche Substanzen herstellen, um sich gegen konkurrierende Bakterien zu behaupten“, erklärt Julia Bandow. Die Mehrheit der heute genutzten Antibiotika wurde so in den 1940er bis 1960er Jahren entdeckt. Da die Analysemethoden seither stark verbessert wurden, hoffen die Forscher auf weitere Entdeckungen – selbst bei der Untersuchung bekannter Bakterien. Sie wollen deshalb die Gesamtheit der von diesen Bakterien ausgeschütteten Substanzen analysieren.

Die meisten Bakterien harren noch ihrer Entdeckung
Darüber hinaus will das Team aber auch andere, bisher unbekannte Bakterien und deren Stoffwechselprodukte untersuchen. „Die Mehrzahl der existierenden Bakterien ist bisher noch gar nicht beschrieben“, gibt Julia Bandow zu bedenken. „Bisher ist schätzungsweise nur ein Prozent von ihnen kultivierbar.“ Eine erste Sammlung von Mikroben im Botanischen Garten der RUB erbrachte rund 200 solcher Mikroorganismen, die bisher noch nicht untersucht wurden. Ein Bakterium kann mitunter bis zu 1.000 Substanzen ausschütten, deren Wirkung auf andere Organismen zumeist unbekannt ist. Diese Stoffe wollen die Forscherinnen und Forscher mit Hilfe von Techniken wie der Flüssigkeitschromatographie-gekoppelten Tandem-Massenspektrometrie aufspüren, um sie dann aufzureinigen und ihre Wirkung auf bakterielle Krankheitserreger zu charakterisieren.

„Was das Zentrum so einzigartig macht, ist, dass wir uns von Anfang an nicht nur auf einzelne Substanzen konzentrieren, sondern untersuchen, was eine Bakterienkultur als Ganzes produziert“, unterstreicht Julia Bandow den systembasierten Ansatz. „Auch bei der Untersuchung der Wirkung nehmen wir zunächst die gesamte Bakterienzelle in den Blick und nicht ausschließlich ein spezielles Zielprotein.“ Mit der Einrichtung des Centers für systembasierte Antibiotikaforschung wollen das LDC und die RUB dazu beitragen, die Antibiotikaresistenzkrise nachhaltig zu adressieren.

###

Kontakte

für das LDC

PR am LDC
T. +49.231.97 42 70 00
E. pr@lead-discovery.de

Lead Discovery Center GmbH
Otto-Hahn-Straße 15
44227 Dortmund
für die Ruhr-Universität Bochum

Prof. Dr. Julia Bandow
Arbeitsgruppe Angewandte Mikrobiologie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: +49 234 32 23102
E-Mail: julia.bandow@rub.de

###

Über das LDC
Die Lead Discovery Center GmbH wurde 2008 von der Technologietransfer-Organisation Max-Planck-Innovation gegründet, um das Potenzial exzellenter Grundlagenforschung für die Entwicklung neuer, dringend benötigter Medikamente besser zu nutzen. Das Lead Discovery Center nimmt vielversprechende Projekte aus der akademischen Forschung auf und entwickelt sie typischerweise weiter bis zu pharmazeutischen Leitstrukturen („Proof-of-Concept in Modellsystemen). In enger Zusammenarbeit mit führenden Partnern aus der akademischen Forschung und Industrie entwickelt das Lead Discovery Center ein umfangreiches Portfolio an Projekten im Bereich niedermolekularer Wirkstoffe sowie therapeutische Antikörper mit außergewöhnlich hohem medizinischem und kommerziellem Potenzial.

Das Lead Discovery Center ist der Max-Planck-Gesellschaft langfristig verbunden und arbeitet mit Partnern wie AstraZeneca, Bayer, Boehringer Ingelheim, Daiichi Sankyo, Johnson & Johnson Innovation, Merck KGaA, Qurient, Roche, Sotio, verschiedenen Investoren sowie mit führenden Zentren für Wirkstoffforschung weltweit zusammen.

Tuesday June 16th, 2020
LDC and Qurient Launch Start-up QLi5 Therapeutics in Dortmund, Germany
Download PDF
LDC and Qurient Launch Start-up QLi5 Therapeutics in Dortmund, Germany

Dortmund, Germany, June 16th, 2020 — The Lead Discovery Center GmbH (LDC) and the South Korean drug development specialist Qurient have founded QLi5 Therapeutics GmbH, together with their partners, the Max Planck Society (MPG) and Nobel laureate Prof. Huber, emeritus director of the Max Planck Institute for Biochemistry. Dortmund based QLi5 Therapeutics licensed novel proteasome inhibitors from LDC and its partners. QLi5 Therapeutics will advance these towards preclinical and clinical development for the treatment of cancers as well as inflammatory and autoimmune disorders.

continue

The novel proteasome inhibitors were generated within a long standing and successful collaboration between the LDC and Prof. Huber. Combining Prof. Huber’s vast expertise in the field of proteasome with the LDC’s drug discovery capabilities, the partners have created a portfolio of proteasome inhibitors with unique binding characteristics and favourable pharmacodynamic properties. The further development in the joint venture with Qurient is the outcome of a successful strategic partnership between Qurient, LDC and Max Planck.

“The proteasome is a real treasure chest,” Prof. Huber comments, “and the launch of Qli5 Therapeutics enables us to harness its potential for the treatment of many diseases. Our new generation of proteasome inhibitors is set to overcome key challenges that have so far hampered a broader application of the first generation of covalently acting proteasome inhibitors.” The proteasome plays an important role in cell regulation by degrading proteins and represents a well established clinical target for the treatment of liquid tumours, in particular multiple myeloma.

“We believe the LDC’s innovative proteasome inhibitors hold exceptional potential, and we are excited to be part of QLi5 Therapeutics to jointly advance them towards preclinical and clinical testing,” Kiyean Nam, CEO and CSO of Qurient adds. “We very much appreciate the LDC as long-term partner and prime source of external innovation.” Over the last years, Qurient has licensed two other inhibitor projects from the LDC, targeting the kinases, Axl and CDK7 respectively. Both leads have made considerable progress since, e.g. nomination for clinical development.

“The foundation of Qli5 Therapeutics is the current peak of our trustful and long-term collaborations with Prof. Huber and Qurient, our exceptionally strong and committed South Korean partner,” Bert Klebl, CEO and CSO of the LDC comments. “This joint venture is a wonderful step forward in our mutual relationship and it is a great opportunity to translate the potential of the proteasome complex into more tangible benefits for patients.”

“Having previously licensed assets to Qurient, we are delighted to now jointly start-up a venture with Qurient. QLi5 provides excellent prospects to enable a much needed next generation of proteasome inhibitors. Bringing the company on track together with Qurient has been a swift and smooth endeavour”, adds Dieter Link, Licensing Manager at Max Planck Innovation GmbH.

# # #

>> Contact
PR Lead Discovery Center
+49 (0)231-97 42 70 00
pr@lead-discovery.de

# # #

About Qurient
Qurient is a clinical-stage biopharmaceutical company listed in Korea Exchange (KRX 115180). Qurient mainly focuses on development of novel therapeutics from discovery to human proof of concept stages through virtual R&D project management platform. Qurient currently has three programs in clinical development: Q301, a topical leukotriene inhibitor for atopic dermatitis, completed Phase 2b study; telacebec (Q203), a first-in-class orally available cytochrome bc1 inhibitor for tuberculosis, completed Phase 2 study; and Q702, entering Phase 1/2 study under US FDA. Qurient recently nominated Q901, a selective CDK7 inhibitor, as a preclinical candidate for solid tumors, which is expected to enter the clinic in 2021.
Further information: www.qurient.com

About LDC
The Lead Discovery Center was established in 2008 by the technology transfer organization Max Planck Innovation, as a novel approach to capitalize on the potential of excellent basic research for the discovery of new therapies for diseases with high medical need. The Lead Discovery Center takes on promising early-stage projects from academia and transforms them into innovative pharmaceutical leads and antibodies that reach initial proof-of-concept in animals. In close collaboration with high-profile partners from academia and industry, the Lead Discovery Center is building a strong and growing portfolio of small molecule leads with exceptional medical and commercial potential.
The Lead Discovery Center sustains a long-term partnership with the Max Planck Society and KHAN-I technology transfer GmbH & Co.KG. LDC has formed alliances with AstraZeneca, Bayer, Boehringer Ingelheim, Merck KGaA, Daiichi Sankyo, Qurient and Sotio as well as leading translational drug discovery centers. More recently, LDC and KHAN-I are transferring their assets also into spin-outs for syndication with other investors.
Further information: www.lead-discovery.de

About Max Planck Innovation
Max Planck Innovation (MI) is responsible for the technology transfer of the Max Planck Society and, as such, the link between industry and basic research. With an interdisciplinary, team MI advises and supports scientists at Max Planck Institutes in evaluating their inventions, filing patents and founding companies. MI offers industry unique access to the innovations of the Max Planck Institutes. Thus, MI performs an important task: the transfer of basic research results into products that contribute to economic and social progress.
Further information: www.max-planck-innovation.com

Tuesday June 16th, 2020
LDC und Qurient bringen Start-up QLi5 Therapeutics in Dortmund auf den Weg
Download PDF
LDC und Qurient bringen Start-up QLi5 Therapeutics in Dortmund auf den Weg

Dortmund, 16. Juni 2020 – Die Lead Discovery Center GmbH (LDC) und der südkoreanische Arzneimittel-Entwickler Qurient haben in enger Kooperation mit weiteren Partnern die QLi5 Therapeutics GmbH gegründet. Die Partner sind die Max-Planck-Gesellschaft (MPG) und der Nobelpreisträger Prof. Huber, emeritierter Direktor des Max-Planck-Instituts für Biochemie. Die in Dortmund ansässige QLi5 Therapeutics hat neue Proteasom-Inhibitoren vom LDC und seinen Partnern lizenziert, um sie in die präklinische und klinische Prüfung voranzubringen und für die Behandlung von Krebs-, Entzündungs- und Autoimmunerkrankungen zu entwickeln.

continue

Die Proteasom-Inhibitoren wurden im Rahmen einer langfristigen erfolgreichen Kooperation von LDC und Prof. Huber entwickelt, wobei Prof. Huber seine führende Expertise auf dem Gebiet des Proteasoms eingebracht hat und das LDC seine besondere Kompetenz im Bereich Wirkstoffentwicklung. Gemeinsam haben sie ein Portfolio an Proteasom-Inhibitoren mit einzigartigen Bindungseigenschaften und günstigen pharmakodynamischen Eigenschaften etabliert. Durch die erfolgreiche, strategische Zusammenarbeit von LDC, Qurient und MPG ist es dann gelungen, ein Joint Venture mit Qurient zur Weiterentwicklung dieses Ansatzes aufzubauen.

„Das Proteasom ist eine wahre Schatztruhe”, so Prof. Huber, „und der Start von QLi5 Therapeutics erlaubt es uns, sein Potenzial zur Behandlung vielfältiger Krankheiten auszuschöpfen. Unsere neuen Proteasom-Inhibitoren haben beste Aussichten, die Schwierigkeiten der ersten Generation kovalent bindender Proteasom-Inhibitoren zu überwinden, die eine breitere Anwendung des Ansatzes bislang behindert haben.” Das Proteasom spielt eine wichtige Rolle in der Zellregulation, indem es Proteine abbaut. Als Zielstruktur zur Behandlung flüssiger Tumore ist es klinisch gut etabliert, insbesondere beim Multiplen Myelom.

„Wir sind vom Potenzial der innovativen Proteasom-Inhibitoren aus dem LDC überzeugt und freuen uns, diese im Team mit QLi5 in die präklinische und klinische Prüfung voranzubringen“, ergänzt Kiyean Nam, CEO und CSO von Qurient. „Wir schätzen das LDC als langfristigen Partner und wichtige Quelle von Innovation.“ Im Laufe der vergangenen Jahre hat Qurient zwei weitere Projekte vom LDC lizenziert, welche auf die Entwicklung von Kinaseinhibitoren abzielen. Beide Projekte haben seitdem deutliche Fortschritte gemacht, z.B. bis hin zu einer Nominierung für die klinische Entwicklung.

„Die Gründung von Qli5 Therapeutics ist der Höhepunkt einer vertrauensvollen, langfristigen Kooperation mit Prof. Huber und Qurient, unserem außergewöhnlich leistungsfähigen und engagierten Partner in Südkorea”, meint Bert Klebl, Geschäftsführer und wissenschaftlicher Direktor des LDC. „Dieses Joint Venture ist ein großartiger Schritt vorwärts in unserer Beziehung und eine wertvolle Chance, das Potenzial des Proteasoms in praktischen Nutzen für Patienten zu übertragen.“

„Nachdem wir bereits Projekte an Qurient lizenziert haben, freuen wir uns jetzt sehr, gemeinsam ein Unternehmen auf den Weg zu bringen. QLi5 hat beste Chancen, die dringend benötigte nächste Generation an Proteasom-Inhibitoren zu realisieren. Die gemeinsame Gründung von Qurient lief sehr zügig und konstruktiv“, so Dieter Link, Lizenzmanager bei Max-Planck-Innovation.

# # #

>> Kontakt
PR Lead Discovery Center
+49 (0)231-97 42 70 00
pr@lead-discovery.de

# # #

Über Lead Discovery Center GmbH
Die Lead Discovery Center GmbH wurde 2008 von der Technologietransfer-Organisation Max-Planck-Innovation gegründet, um das Potenzial exzellenter Grundlagenforschung für die Entwicklung neuer, dringend benötigter Medikamente besser zu nutzen. Das Lead Discovery Center nimmt vielversprechende Projekte aus der akademischen Forschung auf und entwickelt sie typischerweise weiter bis zu pharmazeutischen Leitstrukturen („Proof-of-Concept“) in Modellsystemen. In enger Zusammenarbeit mit führenden Partnern aus der akademischen Forschung und der Industrie entwickelt das Lead Discovery Center ein umfangreiches Portfolio an Projekten im Bereich niedermolekularer Wirkstoffe sowie therapeutische Antikörper mit außergewöhnlich hohem medizinischem und kommerziellem Potenzial. Das Lead Discovery Center ist der Max-Planck-Gesellschaft langfristig verbunden und arbeitet mit Partnern wie AstraZeneca, Bayer, Boehringer Ingelheim, Daiichi Sankyo, Johnson & Johnson Innovation, Merck KGaA, Qurient, Roche, Sotio, verschiedenen Investoren sowie mit führenden Zentren für Wirkstoffforschung weltweit zusammen.
Weitere Informationen: www.lead-discovery.de

 
Über Max-Planck-Innovation
Als Technologietransfer-Organisation der Max-Planck-Gesellschaft ist Max-Planck-Innovation das Bindeglied zwischen Industrie und Grundlagenforschung. Mit unserem interdisziplinären Team beraten und unterstützen wir die Wissenschaftlerinnen und Wissenschaftler der Max-Planck-Institute bei der Bewertung von Erfindungen, der Anmeldung von Patenten sowie der Gründung von Unternehmen. Der Industrie bieten wir einen zentralen Zugang zu den Innovationen der Max-Planck-Institute. Damit erfüllen wir eine wichtige Aufgabe: Den Transfer von Ergebnissen der Grundlagenforschung in wirtschaftlich und gesellschaftlich nützliche Produkte.
Weitere Informationen: www.max-planck-innovation.de

Über Qurient
Qurient ist ein biopharmazeutisches Unternehmen, das an der koreanischen Börse notiert ist (KRX 115180). Mit Hilfe einer virtuellen R&D Projektmanagement-Plattform entwickelt Qurient neue Therapeutika von der Entdeckung bis zum Proof-of-Concept beim Menschen. Qurient hat aktuell drei Programme in der klinischen Entwicklung: Q301, ein topischer Leukotrien-Inhibitor zur Behandlung atopischer Dermatitis (Phase 2b abgeschlossen); Telacebec (Q203), ein innovativer, oral verfügbarer Cytochrom-bc1-Inhibitor zur Behandlung von Tuberkulose (Phase 2 abgeschlossen); und Q702 (zur Phase 1/2 zugelassen durch die FDA). Qurient hat kürzlich Q901, einen selektiven CDK7-Inhibitor, als präklinischen Kandidaten für solide Tumore nominiert. Start der klinischen Prüfungen ist voraussichtlich 2021.
Weitere Informationen: www.qurient.com

Tuesday May 26th, 2020
Qurient Announces U.S. FDA Clearance of IND Application for Q702, a Novel Cancer Immunotherapy
Download PDF
Qurient Announces U.S. FDA Clearance of IND Application for Q702, a Novel Cancer Immunotherapy

Phase 1 clinical study in patients with advanced solid tumor expected to start in 3Q20

continue

Seongnam-si, Korea, and Dortmund, Germany, May 26, 2020 — Qurient Co. Ltd. (KRX: 115180), a clinical stage biotech company in Korea, today announced that the U.S. Food and Drug Administration (FDA) has cleared its investigational new drug (IND) application for Q702, orally available immuno-oncology therapeutic small molecule targeting Axl, Mer and CSF1 receptor tyrosine kinases.
 
Under this IND, Qurient plans to initiate a Phase 1 clinical study in patients with advanced solid tumors for whom standard of care therapies are currently ineffective. The Phase 1 study is expected to begin in 3Q2020 and is designed to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary anti-tumor activity of Q702. The study will be conducted at multiple clinical centers in the United States.
 
“IND clearance for Q702 is an important milestone presenting a novel drug candidate that not only boosts immune cells in the tumor microenvironment but also makes tumor cells more visible to the immune system,” said Kiyean Nam, Ph.D., CEO of Qurient. “We believe Q702 may have an important role in the cancer immunotherapy, improving clinical responses in patients who are unresponsive and/or refractory to currently available immunotherapy.”
 
Q702 is an orally available, selective Axl/Mer/CSF1R triple kinase inhibitor showing significant in vivo activity as monotherapy as well as in combination with anti-PD-1 antibody. Q702 not only modulates innate immune components such as myeloid derived suppressor cell (MDSC), tumor associated macrophage (TAM) in tumor micro-environment (TME), but also increases MHC I expression in tumor cell.
 
The Axl inhibitor program was licensed from Lead Discovery Center (LDC) and the Max Planck Society at lead stage and further optimized by Qurient. The research program initially originated from Professor Axel Ullrich’s laboratory from the Max Planck Institute of Biochemistry, Martinsried/Germany.
 
“We are excited to see the progress in this project and are looking forward to the application in humans in the near future. With Qurient, we have identified an ideal partner for this project and we are more than happy about the results of our strategic partnership with them,” said Matthias Stein-Gerlach, Senior Patent and Licensing Manager at Max Planck Innovation GmbH.
 
”Reaching a clinical candidate for development is one of the most important milestones in our partnerships,” adds Bert Klebl, CEO and CSO of the LDC. “Starting an early-stage collaboration with Ullrich’s lab from Max Planck, leading to a licensing agreement with Qurient, we jointly mastered the pharmaceutical research phase and are now very eager to receive the results from this drug candidate in patients. Starting with this program, we have since built a sustainable and strong partnership with our partner Qurient, focusing on the translation of innovative biology and drug discovery programs from LDC’s academic network.”

# # #

>> Contact
PR Lead Discovery Center
+49 (0)231-97 42 70 00
pr@lead-discovery.de

# # #

About Qurient
 Qurient is a clinical-stage biopharmaceutical company listed in Korea Exchange (KRX 115180). Qurient mainly focuses on development of novel therapeutics from discovery to human proof of concept stages through virtual R&D project management platform. Qurient currently has three programs in clinical development: Q301, a topical leukotriene inhibitor for atopic dermatitis, completed Phase 2b study; telacebec (Q203), a first-in-class orally available cytochrome bc1 inhibitor for tuberculosis, completed Phase 2 study; and Q702, entering Phase 1/2 study. Qurient recently nominated Q901, a selective CDK7 inhibitor, as a preclinical candidate for solid tumors, which is expected to enter the clinic in 2021. For more info, please visit www.qurient.com.
 
About LDC
Lead Discovery Center GmbH was established in 2008 by the technology transfer organization Max Planck Innovation, as a novel approach to capitalize on the potential of excellent basic research for the discovery of new therapies for diseases with high medical need. The Lead Discovery Center takes on promising early-stage projects from academia and transforms them into innovative pharmaceutical leads and antibodies that reach initial proof-of-concept in animals. In close collaboration with high-profile partners from academia and industry, the Lead Discovery Center is building a strong and growing portfolio of small molecule leads with exceptional medical and commercial potential. The Lead Discovery Center sustains a long-term partnership with the Max Planck Society, KHAN-I GmbH & Co.KG and has formed alliances with AstraZeneca, Bayer, Boehringer Ingelheim, Merck KGaA, Daiichi Sankyo, Qurient,  and Sotio, e.g.In addition, LDC also works with leading translational drug discovery centers and with various investors to provide its assets for company creation. Further information at: www.lead-discovery.de.
 
About Max Planck Innovation
Max Planck Innovation (MI) is responsible for the technology transfer of the Max Planck Society and, as such, the link between industry and basic research. With an interdisciplinary team, MI advises and supports scientists at Max Planck Institutes in evaluating their inventions, filing patents and founding companies. MI offers industry unique access to the innovations of the Max Planck Institutes. Thus, MI performs an important task: the transfer of basic research results into products that contribute to economic and social progress. Further information at: www.max-planck-innovation.com.

Wednesday May 13th, 2020
Corona: Impfung ohne Nadel
Download PDF
Corona: Impfung ohne Nadel

Wissenschaftler entwickeln ein Verfahren, mit dem ein Impfstoff über die Haut aufgenommen werden kann

continue

Potsdam und Dortmund, 13. Mai 2020 — Das Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und der Technologietransfer-Fond KHAN-I entwickeln gemeinsam mit dem Lead Discovery Center in Dortmund ein Impfverfahren gegen SARS-CoV2. Die Forscherinnen und Forscher hoffen, in den kommenden Jahren über den gezielten Impfstofftransport über die Haut Immunität und Schutz gegen das Virus aufbauen zu können.

SARS-CoV2 hat mittlerweile über 3,6 Millionen Menschen weltweit infiziert und ist verantwortlich für über 250.000 Todesfälle. Die Dunkelziffer wird deutlich höher eingeschätzt. Für Milliarden Menschen bestimmt diese Pandemie gegenwärtig den Lebensalltag und auch langfristig sind die Auswirkungen auf Weltwirtschaft und Gesundheitssysteme schwerwiegend. In Industrie und akademischer Forschung wird über viele Lösungsansätze an der schnellen Entwicklung eines wirksamen, anhaltenden Impfschutzes gearbeitet, der in der Zukunft die Notwendigkeit drastischer Maßnahmen zur Ausbreitungsbeschränkung solcher Erkrankungen vermeiden kann.
 
Impfstoffe stellen die einzige langfristige Möglichkeit dar, einen Erreger zu bekämpfen. Im Zusammenhang mit SARS-CoV2 werden vor allem neuartige und schnell auf neue Viren anpassbare Impftechnologien forciert, die auf die Applikation von Nukleinsäure-Wirkstoffen oder Verwendung von Adenovirus-Vektoren beruhen. Fast alle dieser Technologien beruhen auf der Injektion des Impfstoffs in den Muskel des Patienten.
 
Gezielte Aktivierung der Langerhans Zellen
In der Haut ist die Dichte der Immunzellen allerdings höher als in Muskeln: Hier befinden sich auch die sogenannten Langerhans-Zellen. Diese Zellen aktivieren und koordinieren die anti-virale Antwort im Körper [1].

Die Arbeitsgruppe von Christoph Rademacher am Max-Planck-Institut für Kolloid- und Grenzflächenforschung hat eine neue Plattformtechnologie entwickelt, mit dem diese Langerhans-Zellen gezielt angesprochen werden können, das Langerhans Cell Targeted Delivery System (LC-TDS) [2, 3]. Dieses System soll es ermöglichen, Impfstoffe direkt auf die Haut aufzutragen oder mit Mikronadeln zu injizieren. Dafür nutzt es die natürlichen Mechanismen des Immunsystems. „Wir gehen davon aus, dass unser System alle Impfstoffe freisetzen kann, die Proteine, Peptide oder mRNA verwenden“, sagt Christoph Rademacher, Gruppenleiter am Potsdamer Max-Planck-Institut und Haupterfinder der neuen Technologie.
 
Neue Plattformtechnologie ermöglicht effiziente Freisetzung des Impfstoffs
Die zentrale Rolle spielt beim LC-TDS ein hoch-spezifischer chemischer Baustein, der das Andocken ausschließlich an Langerhans Zellen ermöglicht und dort eine effiziente Freisetzung des Impfstoffs erlaubt. Mit der Anpassung der bestehenden LC-TDS-Technologie auf SARS-CoV2 versuchen die Forscherinnen und Forscher des Max-Planck-Institut für Kolloid- und Grenzflächenforschung mithilfe der schnell mobilisierten Finanzierung von KHAN-I in Zusammenarbeit mit dem Lead Discovery Center in Dortmund nun ein schnell verfügbares Impfverfahren zu entwickeln. „Die Finanzierung durch KHAN-I ist der erste Schritt für die LC-TDS Technologie in die unternehmerische Selbstständigkeit als künftige Cutanos GmbH, der wir mit großer Hoffnung auf eine breite Anwendbarkeit entgegensehen“, sagt Bert Klebl, Geschäftsführer von KHAN-I und ergänzt: „Weitere Investoren sind willkommen“.
 
“Durch die vom KHAN-I Fund finanzierte Zusammenarbeit zwischen Lead Discovery Center und Max-Planck-Institut wurden äußerst kompetente Partner zusammengebracht und ein sehr guter Weg gefunden, die vielversprechende LC-TDS Technologie schnell für die Entwicklung eines SARS-CoV2-Impfstoffs zur Verfügung stellen zu können”, fügt Mareike Göritz, Patent- und Lizenzmanagerin beim Lizenzgeber und Vertragspartner Max-Planck-Innovation hinzu.
 
 

# # #

>> Kontakt
PR Lead Discovery Center
+49 (0)231-97 42 70 00
pr@lead-discovery.de

# # #
 
Über Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Im Mittelpunkt steht die Erforschung und Kontrolle von sehr kleinen bzw. sehr dünnen Strukturen im Nano- und Mikrometerbereich. Diese winzigen Strukturen bestimmen die Eigenschaften von Materialien und Bio-Systemen. Ein tieferes Verständnis ist Schlüssel für zahlreiche Innovationen wie z.B. neuartige Impfstoffe, intelligente Wirkstoffträger sowie adaptive Biomaterialien. Auch an der Energiegewinnung der Zukunft und der Vermeidung von CO2-Emissionen wird hier geforscht.
 
Über KHAN-I
KHAN-I ist ein Technologietransfer-Fond, der Ende 2019 ins Leben gerufen wurde, u.a. mit Mitteln des Europäischen Investitionsfonds, der Max-Planck-Förderstiftung und der Austria Wirtschaftsservice GmbH. Er investiert in Projekte und Start-up Firmen, die innovative Therapien entwickeln.

Über Lead Discovery Center
Die Lead Discovery Center GmbH wurde 2008 von der Technologietransfer-Organisation Max-Planck-Innovation gegründet, um das Potenzial exzellenter Grundlagenforschung für die Entwicklung neuer, dringend benötigter Medikamente besser zu nutzen. Das Lead Discovery Center nimmt vielversprechende Projekte aus der akademischen Forschung auf und entwickelt sie typischerweise weiter bis zu pharmazeutischen Leitstrukturen („Proof-of-Concept“ in Modellsystemen). In enger Zusammenarbeit mit führenden Partnern aus der akademischen Forschung und Industrie entwickelt das Lead Discovery Center ein umfangreiches Portfolio an Projekten im Bereich niedermolekularer Wirkstoffe sowie therapeutische Antikörper mit außergewöhnlich hohem medizinischem und kommerziellem Potenzial. Weitere Informationen: www.lead-discovery.de
 
Über Max-Planck-Innovation
Als Technologietransfer-Organisation der Max-Planck-Gesellschaft ist Max-Planck-Innovation das Bindeglied zwischen Industrie und Grundlagenforschung. Mit unserem interdisziplinären Team beraten und unterstützen wir die Wissenschaftlerinnen und Wissenschaftler der Max-Planck-Institute bei der Bewertung von Erfindungen, der Anmeldung von Patenten sowie der Gründung von Unternehmen. Der Industrie bieten wir einen zentralen Zugang zu den Innovationen der Max-Planck-Institute. Damit erfüllen wir eine wichtige Aufgabe: Den Transfer von Ergebnissen der Grundlagenforschung in wirtschaftlich und gesellschaftlich nützliche Produkte. Weitere Informationen: www.max-planck-innovation.de
 

 
1.         Wong, E., et al., Langerhans Cells Orchestrate the Protective Antiviral Innate Immune
            Response in the Lymph Node. Cell Rep, 2019. 29(10): p. 3047-3059 e3.
2.         Wamhoff, E.C., et al., A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell
            Targeting. ACS Cent Sci, 2019. 5(5): p. 808-820.
3.         Schulze, J., et al., A Liposomal Platform for Delivery of a Protein Antigen to
            Langerin-Expressing Cells.
Biochemistry, 2019. 58(21): p. 2576-2580.

Wednesday May 13th, 2020
Corona: Vaccination Without Needle?
Download PDF
Corona: Vaccination Without Needle?

Scientists are developing a procedure whereby vaccines can be absorbed through the skin.

continue

Potsdam and Dortmund, Germany, May 13, 2020 — The Max Planck Institute of Colloids and Interfaces in Potsdam and the Technology Transfer Fund KHAN-I are developing a vaccine procedure for SARS-CoV2 together with the Lead Discovery Center in Dortmund. The researchers hope that within the next few years, they will be able to establish immunity to and protection from the virus using targeted vaccine transport via the skin.

SARS-CoV2 has already infected more than 3.6 million people worldwide, and is responsible for over 250.000 deaths. The number of unreported cases is estimated to be significantly higher. The pandemic is affecting the everyday life of billions of people, with long-term severe consequences for the global economy and health systems. Industry and academia are currently applying many different approaches to the rapid development of effective, sustained immunization in order to avoid the drastic measures required to prevent the spread of such diseases.
 
Vaccines are the only possibility for defeating an infectious agent in the long term. In the case of SARS-CoV2, novel vaccine technologies that can quickly be adapted to new viruses are being pushed, particularly those based on the application of nucleic acids or the use of adenovirus vectors. Nearly all these technologies involve the injection of the vaccine into the patient’s muscle.
 
Targeted activation of Langerhans cells
The concentration of immune cells is, however, higher in the skin than in muscle. So-called Langerhans cells are also present in the skin, and these activate and coordinate the body’s antiviral response [1].
 
Christoph Rademacher’s research group at the Max Planck Institute of Colloids and Interfaces has developed a new platform technology that specifically addresses Langerhans cells: the Langerhans Cell Targeted Delivery System (LC-TDS) [2, 3]. This system enables vaccines to be applied directly onto the skin or injected with microneedles, thereby using the immune system’s natural mechanisms. “We expect our system to be able to release all vaccines that use proteins, peptides or mRNA,” says Christoph Rademacher, Group Leader at the Max Planck Institute of Colloids and Interfaces and main inventor of the new technology.
 
New platform technology allows efficient vaccine release
The central role in the LC-TDS is played by a highly specific chemical component that enables exclusive binding to Langerhans cells, where the efficient release of vaccine can then take place. By adapting existing LC-TDS technology to SARS-CoV2, researchers at the Max Planck Institute of Colloids and Interfaces – with the help of the swiftly mobilized KHAN-I financing – now aim to develop a rapidly available vaccination procedure in cooperation with the LDC in Dortmund. “The KHAN-I financing marks the first step for LC-TDS technology on the road to future entrepreneurial independence as Cutanos GmbH, which we look forward to with high hopes for wide-ranging applications,” says Bert Klebl, CEO of KHAN-I, adding: “Further investors are welcome.”
 
“With the KHAN-I-funded collaboration between the LDC and the Max Planck Institute, extraordinarily competent partners have been brought together, and an excellent way has been found to quickly make this promising LC-TDS technology available for the development of a SARS-CoV2 vaccine,” adds Mareike Göritz, Patent & License Manager at the licensor and contractual partner Max Planck Innovation.
 
 
# # #

 

>> Contact
PR Lead Discovery Center
+49 (0)231-97 42 70 00
pr@lead-discovery.de

# # #

 
About the Max Planck Institute of Colloids and Interfaces
The institute focuses on the exploration and control of very small and very thin structures in in the nanometer and micrometer ranges. These minute structures determine the properties of materials and biosystems. A deeper understanding is the key to numerous inventions, e.g. new vaccines, smart drug carriers and adaptive biomaterials. Future energy production and avoidance of CO2 emissions are further areas of research.
 
About KHAN-I
KHAN-I is a technology transfer fund founded at the end of 2019 and financed, among others, by the European Investment Fund, the Max Planck Foundation and the Austria Wirtschaftsservice GmbH. It invests in projects and start-ups developing innovative therapies.
 
About the Lead Discovery Center
The Lead Discovery Center was established in 2008 by the technology transfer organization Max Planck Innovation, as a novel approach to capitalize on the potential of excellent basic research for the discovery of new therapies for diseases with high medical need. The Lead Discovery Center takes on promising early-stage projects from academia and transforms them into innovative pharmaceutical leads and antibodies that reach initial proof-of-concept in animals. In close collaboration with high-profile partners from academia and industry, the Lead Discovery Center is building a strong and growing portfolio of small molecule leads with exceptional medical and commercial potential. Further information: www.lead-discovery.de
 
About Max Planck Innovation
Max Planck Innovation (MI) is responsible for the technology transfer of the Max Planck Society and, as such, the link between industry and basic research. With an interdisciplinary, team MI advises and supports scientists at Max Planck Institutes in evaluating their inventions, filing patents and founding companies. MI offers industry unique access to the innovations of the Max Planck Institutes. Thus, MI performs an important task: the transfer of basic research results into products that contribute to economic and social progress.
 
 
1.         Wong, E., et al., Langerhans Cells Orchestrate the Protective Antiviral Innate Immune
            Response in the Lymph Node.
            Cell Rep, 2019. 29(10): p.3047-3059 e3.
2.         Wamhoff, E.C., et al., A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell
            Targeting. ACS Cent Sci, 2019. 5(5): p. 808-820.
3.         Schulze, J., et al., A Liposomal Platform for Delivery of a Protein Antigen to
            Langerin-Expressing Cells.
Biochemistry, 2019. 58(21): p. 2576-2580.
 

Friday March 27th, 2020
Das LDC überbrückt das Tal des Todes
Download PDF
Das LDC überbrückt das Tal des Todes

Das 2008 gegründete Lead Discovery Center (LDC) schließt die Finanzierungslücke zwischen Grundlagenforschung und Medikamentenentwicklung.
Im Gespräch beschreibt Geschäftsführer Bert Klebl die enge Zusammenarbeit mit Wissenschaftlern und den Vorbildcharakter des LDC.

Thursday February 27th, 2020
LDC-associated company Quench Bio Closes USD 50M Series A Financing to Advance First-in-Class Medicines against Severe Inflammatory Diseases
Download PDF
LDC-associated company Quench Bio Closes USD 50M Series A Financing to Advance First-in-Class Medicines against Severe Inflammatory Diseases

Dortmund and Munich, Germany, February 27, 2020 — The Lead Discovery Center GmbH (LDC), the Max Planck Society (MPG) and Max Planck Innovation (MI) announce that their associated company Quench Bio Inc., Cambridge, USA has raised USD 50 million in a Series A financing round. The financing was led by RA Capital Management (RA Capital) and included Abbvie Ventures as well as co-founders and seed investors Atlas Venture (Atlas) and Arix Bioscience plc (Arix).

continue

Quench Bio develops therapies targeting innate immune pathways to treat autoimmune and inflammatory diseases. The approach centres on a pore-forming protein called Gasdermin D that was identified as a potential new target during a collaboration between the Max Planck Institute for Infection Biology in Berlin, Germany, the Max Planck Institute for Molecular Physiology in Dortmund, Germany and the LDC.

In close collaboration, the partners generated a series of Gasdermin inhibitors that prevent the release of inflammatory cytokines, alarmins and neutrophil extracellular traps (NETs), thereby validating the protein as a key target at the core of multiple inflammatory cell death pathways, including pyroptosis and NETosis. The specific targeting of Gasdermin represents a novel mode of action for the treatment of numerous inflammatory diseases associated with NETosis, including rheumatoid arthritis, lupus, multiple sclerosis and nonalcoholic steatohepatitis (NASH). When Quench Bio was founded in 2018, it received an exclusive license to IP relating to the therapeutic use of Gasdermin by LDC and MI. The co-founders, besides LDC and MI, include Atlas, Arix and MPG Directors Prof. Arturo Zychlinsky and Prof. Herbert Waldmann, among others.

The company has brought together an experienced team of drug developers and scientists, led by Chief Executive Officer Samantha Truex, the former Chief Business Officer of Padlock Therapeutics, which was acquired by Bristol Myers Squibb in 2016.

“With such a strong team of entrepreneurs, scientists and investors, the company is in an excellent position to deliver on the promise of an exciting new therapeutic platform concept,” says Bert Klebl, one of the LDC’s managing directors. “The emergence of Quench exemplifies the power of our collaborative approach to drug discovery. Together, we have been able to translate the discovery of Gasdermin and its role in inflammatory cell death into a validated therapeutic strategy with game-changing potential in many inflammation-related indications.”

“The LDC has already demonstrated a track record of successful outlicensing deals to pharma companies. The foundation of Quench Bio represents a major step in the spin-off sector. This VC-backed form of commercialization of MPG/LDC projects allows exquisitely well-focused, comprehensive and fast development,” adds Dieter Link, licensing manager at Max Planck Innovation.

 “I’m delighted by the strong support from MPG, MI, LDC and our investors, which enables us to advance our scientific findings towards medical practice,” adds Prof. Arturo Zychlinsky, Director of the Max Planck Institute for Infection Biology. “Targeting inflammatory cell death pathways is a unique approach and may provide new opportunities for patients who currently have very limited treatment options.”

“Gasdermins are among, if not the most innovative and truly novel targets for the treatment of inflammatory diseases. They offer multiple opportunities for a whole flight of drug discovery programs,” adds Prof. Herbert Waldmann, Director at the Max Planck Institute of Molecular Physiology and Member of the Board of Directors of Quench Bio. “The Quench team is highly experienced in drug discovery and commands in-depth knowledge in the relevant disease areas, so that the company is ideally positioned for success.”

# # #

 

About Quench Bio

Quench Bio is a biotechnology company leveraging new insights into Gasdermin biology and innate immunity to develop medicines for severe inflammatory diseases. Quench’s lead compounds target and inhibit the pore-forming protein Gasdermin D, a central player in both pyroptosis and NETosis pathways that mediates the release of inflammatory cytokines, alarmins, DNA and NETs. Quench Bio launched in January 2020 with USD 50 million from leading life science investors including Atlas Venture, Arix Bioscience, RA Capital and AbbVie Ventures.

To learn more, please visit www.quenchbio.com.

 

About LDC

The Lead Discovery Center was established in 2008 by the technology transfer organization Max Planck Innovation, as a novel approach to capitalize on the potential of excellent basic research for the discovery of new therapies for diseases with high medical need. The Lead Discovery Center takes on promising early-stage projects from academia and transforms them into innovative pharmaceutical leads and antibodies that reach initial proof-of-concept in animals. In close collaboration with high-profile partners from academia and industry, the Lead Discovery Center is building a strong and growing portfolio of small molecule leads with exceptional medical and commercial potential.

The Lead Discovery Center sustains a long-term partnership with the Max Planck Society and has formed alliances with AstraZeneca, Bayer, Boehringer Ingelheim, Merck KGaA, Daiichi Sankyo, Qurient, Johnson & Johnson Innovation, Roche and Sotio as well as various investors leading translational drug discovery centers around the globe.

Further information at: www.lead-discovery.de

 

About Max Planck Innovation

Max Planck Innovation (MI) is responsible for the technology transfer of the Max Planck Society and, as such, the link between industry and basic research. With an interdisciplinary, team MI advises and supports scientists at Max Planck Institutes in evaluating their inventions, filing patents and founding companies. MI offers industry unique access to the innovations of the Max Planck Institutes. Thus, MI performs an important task: the transfer of basic research results into products that contribute to economic and social progress.

Further information at: www.max-planck-innovation.com

Wednesday February 5th, 2020
German–Chinese consortium to develop new drugs for the treatment of heart failure and cardiac hypertrophy
Download PDF
German–Chinese consortium to develop new drugs for the treatment of heart failure and cardiac hypertrophy

February, 5th  2020, Dortmund – The development of a new drug for the treatment of heart failure and cardiac hypertrophy is a primary goal of “ChInValue – NRW–China Cooperations: GRK5 Inhibitors”. The project is being coordinated by the Lead Discovery Center (LDC) and conducted in cooperation with the Leibniz Institute for Analytical Sciences (ISAS) and two Chinese partners: Shanghai Jemincare Pharmaceutical Co. and Makohs Biotech. The German–Chinese consortium will devote itself to the fight against cardiac insufficiency and hypertrophy until the end of 2022. The German partners are being funded by a grant of around EUR 1 million from the German Federal Ministry of Education and Research (BMBF).

continue

Research will focus on GRK5, a protein kinase that has so far received little attention in drug development, despite being implicated in the development of heart failure or hypertrophic heart muscle in the vast majority of cases. The aim of the project is to develop low-molecular-weight substances that inhibit the pathological processes mediated by GRK5.

“Our ambitious goal is to develop a drug candidate that is ready to enter preclinical development by the end of this three-year project,” says LDC’s Managing Director and CSO, Dr Bert Klebl.

“We hope to develop an effective new therapy from which heart disease patients can profit in the near future,” explains the ISAS scientific director and head of the Biomedical Research Department, Prof. Kristina Lorenz, a pharmacologist specializing in the treatment of cardiovascular diseases.  

Financial support is being provided by the German Federal Ministry of Education and Research as part of its funding programme “InterSPIN – internationalization of leading-edge clusters, forward-looking projects and comparable networks”. Within this context, BIO.NRW and BIO Clustermanagement NRW GmbH have conceived and realized the internationalization alliance „NRW-China Cooperations: A strategic perspective for innovative life science SME value chains”, of which this project in the fight against heart failure is a part.

###

The author is responsible for the content of this publication.

Contacts

for the LDC

Public Relations LDC
T. +49 231 9742 7000
E. pr@lead-discovery.de

Lead Discovery Center GmbH
Otto-Hahn-Straße 15
44227 Dortmund

Germany

 

for ISAS

ISAS e.V.
T: +49 (0)2 31.13 92-1082
E. presse@isas.de

Leibniz Institute for Analytical Sciences (ISAS)
Bunsen-Kirchhoff-Straße 11
44139 Dortmund

Germany

###

About the LDC

The Lead Discovery Center (LDC) was established in 2008 by the technology transfer organization Max Planck Innovation, as a novel approach to capitalize on the potential of excellent basic research for the discovery of new therapies for diseases with high medical need.

The LDC takes on promising early-stage projects from academia and transforms them into innovative pharmaceutical leads that reach initial proof-of-concept in animals. In close collaboration with high-profile partners from academia and industry, the LDC is building a strong and growing portfolio of small molecule leads with exceptional medical and commercial potential.

The LDC sustains a preferred partnership with the Max Planck Society and has formed alliances with AstraZeneca, Apeiron, Bayer, Boehringer Ingelheim, Daiichi Sankyo, Grünenthal, Johnson & Johnson Innovation, Merck KGaA, Qurient and Sotio as well as various investors and leading translational drug discovery centres around the globe.

Further information: www.lead-discovery.de

About ISAS

ISAS (Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V.) develops fast, accurate, and cost-effective analytical procedures for health research in order to improve capabilities for the prevention, early diagnosis, and treatment of diseases. By combining expertise in chemistry, biology, physics, and computer science, we make measurable what cannot be measured yet. The institute was founded in Dortmund more than 60 years ago and has about 200 employees at two sites in Dortmund and one in Berlin Adlershof. Excellent interdisciplinary research, scientific qualification, and the transfer of our research findings to science, economy, and society are our key objectives to implement our mission.

Further information: www.isas.de

Tuesday September 29th, 2015
LDC and Infinity Pharmaceuticals to Cooperate on the Identification of Novel Drug Discovery and Development Opportunities in Oncology
Download PDF

LDC and Infinity Pharmaceuticals to Cooperate on the Identification of Novel Drug Discovery and Development Opportunities in Oncology

LDC and Infinity Pharmaceuticals, Inc. – Cambridge, MA – will work together to jointly select high-potential cancer drug discovery projects from the LDC’s portfolio and its broad academic network.

continue

Dortmund, September 29, 2015 – The Lead Discovery Center GmbH (LDC) and Infinity Pharmaceuticals, Inc. – Cambridge, MA – will work together to jointly select high-potential cancer drug discovery projects from the LDC’s portfolio and its broad academic network.

In the context of their collaboration, the LDC will give Infinity insight into project opportunities arising from its diverse portfolio and its extensive academic network. This includes leading universities as well as renowned institutes from Germany’s world-class research organizations, the Max Planck Society and the Helmholtz Association. The focus will be on the field of oncology.

Infinity will review proposals with the goal of identifying one or more programs for either licensing or collaboration. For the projects selected, Infinity may draw on the LDC’s expertise and resources in early drug discovery and development.

“We are extremely pleased to cooperate with Infinity. With strong capabilities in drug discovery and development and a novel anti-cancer development candidate in registration-focused clinical trials, Infinity is perfectly set to advance pioneering oncology projects into the clinic and eventually to the patient,” says Dr Bert Klebl, Managing Director of the LDC. “Moreover, we are excited to extend our network of collaboration partners into the US. The strong line-up of LDC’s industry partners in Europe, Asia and now in the US highlights the innovation potential of academic research in Germany.”

The partners will agree on the scope and terms of potential co-development partnerships on a project-by-project basis to ensure optimal project progress and a fair distribution of investments and potential returns. Any revenue the LDC may receive from commercialization will be shared with the academic inventors and collaborating institutions.

“The LDC shares our philosophy of discovering new therapies through a data-driven, interdisciplinary approach,” states Dr Vito Palombella, Chief Scientific Officer at Infinity. “The LDC’s commitment to creating new medicines for patients is demonstrated through its strong track record, and Infinity is pleased to work with the LDC on the identification of the next generation of promising new therapies for the treatment of cancer.”

Thursday June 11th, 2015
LDC to Collaborate with Johnson & Johnson Innovation on Acceleration of Academic Drug Discovery Initiatives
Download PDF
Click here

LDC to Collaborate with Johnson & Johnson Innovation on Acceleration of Academic Drug Discovery Initiatives

LDC and Johnson & Johnson Innovation Ltd., will collaborate to identify and accelerate innovative drug candidates for the treatment and prevention of diseases with high unmet medical needs.

continue

Dortmund, June 11, 2015 – The Lead Discovery Center GmbH (LDC) and Johnson & Johnson Innovation Ltd., will collaborate to identify and accelerate innovative drug candidates for the treatment and prevention of diseases with high unmet medical needs.

Over a two-year period, LDC and the team from the Johnson & Johnson’s London Innovation Centre will work together to identify on an ongoing basis translational research opportunities sourced from LDC’s top-tier academic network, including institutes from the Max Planck Society, the Helmholtz Association and various universities. Johnson & Johnson Innovation will review and evaluate the opportunities with the objective of establishing drug discovery collaborations with LDC in selected projects that are aligned with the company’s therapeutic focus areas.

 

Promising drug discovery ideas from LDC’s broad academic network:
Projects selected by Johnson & Johnson Innovation shall be incubated at LDC

“Through our academic network, we have access to a broad range of exciting molecular targets, pathobiological mechanisms and new therapeutic approaches which are the basis for project proposals with a high innovation potential for drug discovery,” says Dr Bert Klebl, CEO of the LDC. “Together with Johnson & Johnson Innovation, we will now be able to offer a solution for more of our academic partners to translate their innovative findings into benefit for patients. We very much look forward to leveraging our interests, expertise and capabilities together with Johnson & Johnson Innovation to incubate additional collaborative projects at the LDC.”

For each project selected by Johnson & Johnson Innovation, the partners will negotiate a collaboration agreement for its joint development at the LDC up to the next mutually agreed milestone. The details regarding financial provisions and research activities will be agreed on a project-by-project basis to ensure a fair balance of investments and potential returns between the partners. Any revenue received from commercialization will be shared with the academic inventors and collaborating institutions.

Wednesday June 3rd, 2015
LDC and Qurient Close Licence Agreement on Novel Anti-cancer Compound
Download PDF
Click here

LDC and Qurient Close Licence Agreement on Novel Anti-cancer Compound

LDC and Qurient Co., Ltd have signed a licence deal providing Qurient with exclusive worldwide rights to a series of highly-selective CDK7 inhibitors discovered at the LDC for the treatment of cancer, inflammation and viral infections. The partners will closely collaborate to advance the approach from the validated lead stage into clinical development. Upon successful proof-of-concept in humans they will jointly identify a suitable partner for follow-on licensing.

continue

Starting point of a broader drug discovery and development alliance

Dortmund, Germany and Gyeonggi-do, South Korea, June 03, 2015 –        The Lead Discovery Center GmbH (LDC), a renowned translational drug discovery organization established by Max Planck Innovation, and Qurient Co., Ltd have signed a licence deal providing Qurient with exclusive worldwide rights to a series of highly-selective CDK7 inhibitors discovered at the LDC for the treatment of cancer, inflammation and viral infections. The partners will closely collaborate to advance the approach from the validated lead stage into clinical development. Upon successful proof-of-concept in humans they will jointly identify a suitable partner for follow-on licensing.

Under the terms of the agreement LDC will receive an upfront payment and milestone payments upon the achievement of specific development events. In addition, Qurient will fund the future development activities of the collaborative program.

The agreement on CDK7 is the second licensing deal between LDC, Max Planck Innovation and Qurient and the starting point of a broader alliance between the partners. Expanding on the success of their ongoing collaboration on Axl kinase inhibitors initiated in 2013, both sides have agreed to join forces for the development of selected further projects from the LDC’s portfolio in the fields of oncology and inflammation. The partners will closely work together, from project identification through to clinical proof-of-concept and subsequent sublicensing, with the LDC leading drug discovery and optimization and Qurient guiding preclinical and clinical development, typically until completion of Phase II.

“It is an exciting moment for Qurient to have LDC as an upstream partner, providing innovative drug discovery programs to our ‘lead-to-clinical POC’ pipelines,” says Dr Kiyean Nam, CEO of Qurient. “As being shown in the Axl inhibitor program, we will join forces to achieve exceptional science and operational excellence until the program reaches mutually beneficial end point.”

“The partnership with Qurient is an essential part of our strategy to create versatile opportunities for accelerating the transfer of our leads into biopharmaceutical development,” says Dr Bert Klebl, CEO of the LDC. “Qurient combines first-class development expertise with an exceptional commitment to moving innovative projects forward. Together, we can advance our projects swiftly into the clinic and benefit from the dynamic financial environment for biotech companies in South Korea.”

About the CDK7 program

Cyclin-dependent kinases (CDKs) play a pivotal role in cell cycle control and transcription regulation and have long been considered attractive therapeutic targets. However, selective inhibitors have been hard to develop because the CDK active sites are highly conserved. Due to their outstanding specificity for CDK7, the LDC’s CDK inhibitors have good prospects for overcoming this hurdle. They have demonstrated excellent potency and selectivity in vitro and in vivo. LDC’s CDK7 inhibitors are non-covalent picomolar biochemical inhibitors. These features may translate into an attractive therapeutic window and clearly set them apart from a recently published and covalently acting first-generation of CDK7 inhibitors, also described as inhibitors of super-enhancer elements.

In two very recent publications, LDC and its collaboration partners described the mechanistic activity of their CDK7 inhibitors as specific transcriptional modulators (Kelsö et al. 2014) and through their transcriptional activity not only as potent anticancer but even as potential safe antiviral agents (Hutterer et al. 2015).

LDC’s CDK7 project emerged from a scientific collaboration with research groups from the Westfälische Wilhelms-University of Münster (Prof. Dr Michael Meisterernst) and the Max-Planck-Institute for Immunobiology and Epigenetics in Freiburg (Dr Gerhard Mittler). LDC has received generous support for this program from the German Federal Ministry of Education and Research (BMBF) as well as the Max-Planck-Foundation and its benefactor Dr Klaus Neugebauer.

This transaction was actively supported by Max Planck Innovation, the technology transfer organization of the Max Planck Society.

About Qurient

Qurient started operation in 2009 as a venture capital funded spin-off biotechnology company of the Institut Pasteur Korea (IPK) and is dedicated to bridging gap between innovative sciences and clinical development for unmet medical needs. Qurient operates as a network R&D company with a small pharmacology research laboratory, and has in-house expertise in project management capabilities to facilitate discovery and development outsourcing projects. Qurient is focused on small molecule therapeutics in the oncology and inflammatory diseases areas, and covers the R&D stages from discovery to clinical proof-of-concept.

Further information at: www.qurient.com

Contact

Taehwa Chang

T. +82.31.8060 1600

E. tchang@quient.com

Tuesday April 21st, 2015
The Charcot-Marie-Tooth Association enters collaboration with LDC’s subsidiary Affectis to advance therapies for Charcot-Marie-Tooth 1A disorder
Download PDF
Click here

The Charcot-Marie-Tooth Association enters collaboration with LDC’s subsidiary Affectis to advance therapies for Charcot-Marie-Tooth 1A disorder

The Charcot-Marie-Tooth Association (CMTA) announced today that it has entered into a collaboration with Affectis Pharmaceuticals AG to evaluate the efficacy of advanced Affectis compounds in neurological and behavioral models of CMT1A.

Affectis is a therapy development company and since 2013 a fully owned subsidiary of LDC. The small molecule antagonists of the P2X7 ligand-gated ion channel are being jointly developed by Affectis and the LDC.

continue

Dortmund, Germany, 21 April, 2015 – The Charcot-Marie-Tooth Association (CMTA) announced today that it has entered into a collaboration with Affectis Pharmaceuticals AG to evaluate the efficacy of advanced Affectis compounds in neurological and behavioral models of CMT1A.

Affectis is a therapy development company and since 2013 a fully owned subsidiary of the Lead Discovery Center GmbH (LDC), a spin-off of Max Planck Innovation GmbH. The goal of the collaboration is to evaluate the pharmacology of small molecule antagonists of the P2X7 ligand-gated ion channel that are being jointly developed by Affectis and the LDC. P2X7 is an ATP-gated ion channel which is essential for cellular calcium homeostasis, and for the maturation and release of pro-inflammatory cytokines, including interleukin-1beta (IL-1β).

The collaboration’s aim is to demonstrate the potential of P2X7 antagonists that have high potency for the human form of P2X7 and are orally bioavailability in treating CMTA1. Use of such antagonists may impede the development of motor and sensory control defects associated with progression of the disease.

Pre-clinical studies previously demonstrated a likely role for P2X7 over-activity in the pathogenesis of CMT1A (Nobbio et al. (2009) J. Biol.Chem. 284, 23146). An altered calcium homeostasis was observed in Schwann cells from rats that exhibit a CMT1A pathology due to the expression of extra copies of the pmp22 gene; this is hypothesized to lead to the disruption of myelination associated with the disease. The authors further showed that the changes in intracellular calcium coincided with overexpression of the P2X7 ligand-gated ion channel, and that its inhibition leads to myelin repair.

 

Charcot–Marie–Tooth disease Type 1 (CMT1) is rare inherited
disorder of the peripheral nervous system characterised by
progressive and severe demyelination.

Patrick Livney, CEO of the CMTA notes: “The association has assembled the scientific and clinical key opinion leaders in CMT disorders and the research tools necessary to validate therapeutic opportunities for their clinical potential. We have set out to engage drug makers to work together with the CMTA to advance new therapeutic approaches to our patients, and our STAR network combines this world class research expertise with an operational capability has been highly enabling to collaborative alliances formed for this purpose. Currently, there are no therapies for the different CMT disorders to halt either the onset or progression of the disease. This Affectis collaboration represents an exciting new opportunity for the CMTA to both de-risk and accelerate development of a novel drug class for the treatment of CMT1A, the most prevalent of the genetic neuropathies.”

Affectis CEO Michael Hamacher said of the collaboration: “Our P2X7 lead compounds have excellent pharmacological properties and repeatedly showed efficacy in various animal models. With initiation of the CMT1A studies we see the unique chance to evaluate both the role of P2X7 as well as the potency of the Affectis’ compounds in the Charcot-Marie-Tooth 1A disorder, a demyelinating neuropathy with unmet medical need. We are very much looking forward to the collaboration with the excellent team of experts from the CMTA to jointly progress the P2X7 leads into an effective therapy for Charcot-Marie-Tooth 1A”.

About Charcot Marie Tooth Disease Type 1A (CMT1A)

CMT1A is a rare (1:5,000) hereditary motor and sensory demyelinating peripheral neuropathy (also known as Hereditary Motor and Sensory Neuropathy, HMSN) which is caused by an intrachromosomal duplication and consecutive toxic overexpression of the PMP22 gene on chromosome 17. CMT1A is one of the most common inherited peripheral nerve-related disorders passed down through families in an autosomal dominant fashion. CMT1A disease becomes evident in young adulthood and slowly progresses with distally pronounced muscle weakness and numbness. Pain can range from mild to severe. The disease can be highly debilitating with patients becoming wheelchair-bound and is often accompanied by severe cases of neurological pain. There is no known cure for this incapacitating disease.

About the Charcot-Marie-Tooth Association

The Charcot-Marie-Tooth Association (CMTA) is a registered 501c3 dedicated to serving an international patient community that suffers from rare and disabling neuropathies of genetic origin. The CMTA directly engages its STAR scientific and clinical research network in the identification, validation and clinical development of therapies for the different Charcot-Marie-Tooth disorders.

Contact

Patrick Livney, CEO

Charcot-Marie-Tooth Association

T. +1-312.750.9800

Email: pal@cmtausa.org

Further information at: www.cmtausa.org

About Affectis and the LDC

Affectis Pharmaceuticals AG is a pharmaceuticals company that develops novel drugs for the treatment of neurodegenerative and neuroinflammatory diseases. Affectis’ capabilities in drug discovery and medicinal chemistry allowed the company to develop drugs with innovative mechanisms of action based on pioneering findings in the field of P2X7 receptors. Affectis started operations in January 2004 as a spin-off from the Max Planck Institute of Psychiatry. Since January 2014 Affectis has relocated to Dortmund, Germany, and is now fully owned by and closely collaborates with the Lead Discovery Center GmbH (LDC) to further advance its core asset AFC-5128.

LDC was established in 2008 by the technology transfer organization Max Planck Innovation as a novel approach to capitalize on the potential of excellent basic research for the discovery of new therapies for diseases with high medical need. LDC is a translational incubator for innovative academic projects in the field of small molecule drug discovery and has a strong track record in successful industry partnerships with AstraZeneca, Bayer, Merck Serono and Daiichi Sankyo.

Contact

Dr. Michael Hamacher, CEO

Affectis Pharmaceuticals AG

T. +49.231.97 42 70 00

Email: hamacher@affectis.de

Further information at: www.affectis.de & www.lead-discovery.de

Tuesday April 14th, 2015
LDC and AstraZeneca broaden Drug Discovery Alliance
Download PDF
Click here

LDC and AstraZeneca broaden Drug Discovery Alliance

The Lead Discovery Center GmbH (LDC) and AstraZeneca have expanded their alliance to discover new medicines for the treatment of human diseases with high unmet medical need. Through an additional three-year period of collaboration, AstraZeneca will provide an extended set of high-quality compounds to the LDC’s internal screening collection to pursue projects in the areas of cardiovascular and metabolic diseases, oncology, respiratory and inflammation and neuroscience.

continue

Dortmund, April 14, 2015 – The Lead Discovery Center GmbH (LDC) and AstraZeneca have expanded their alliance to discover new medicines for the treatment of human diseases with high unmet medical need. Through an additional three-year period of collaboration, AstraZeneca will provide an extended set of high-quality compounds to the LDC’s internal screening collection to pursue projects in the areas of cardiovascular and metabolic diseases, oncology, respiratory and inflammation and neuroscience.

AstraZeneca and LDC expand their succesful alliance
to discover new medicines.

The renewal of the partnership follows a successful two-year period of collaboration and establishes the LDC as one of AstraZeneca’s four leading translational centers. Over the last two years, the LDC and AstraZeneca have already initiated six high-potential drug discovery projects which are progressing well.

“We are very much looking forward to continuing and expanding our alliance with AstraZeneca,” says Bert Klebl, CEO of the LDC. “The passionate scientific exchange and very productive interaction so far has exceeded our expectations and we are more than happy to now further build on this well-functioning partnership. We not only share our compound libraries but, moreover, our know-how and expertise on technologies and emerging disease areas, which enables us to identify, select and effectively progress joint projects . Together, we are perfectly situated to accelerate the translation of academic findings into new medicines.”

“We are very excited to continue our partnership with the LDC,” says Garry Pairaudeau, Head of External sciences at AstraZeneca. “Open Innovation is a key part of our drug discovery strategy and we are continuing to grow our external partner network. With LDC we have enjoyed a vibrant and productive scientific collaboration and it is clear that their scientists share our values and commitment to developing new medicines for patients who have an unmet medical need.“

Under the terms of the alliance, the LDC will screen the combined compound collection of more than 450,000 compounds against a portfolio of innovative biological targets. Targets will be carefully selected by the LDC from its broad range of academic partner institutions, including members of the Max Planck Society, Germany’s leading basic research organization. A joint steering committee oversees the collaboration and reviews the output. The LDC takes the most promising compounds into further drug discovery by optimizing them into pharmaceutical leads with in vivo proof-of-concept. AstraZeneca has a preferred right to obtain a license for pre-clinical and clinical development and commercialization for collaboration projects.

About AstraZeneca

AstraZeneca is a global, innovation-driven biopharmaceutical business with a primary focus on the discovery, development and commercialisation of prescription medicines for gastrointestinal, cardiovascular, neuroscience, respiratory and inflammation, oncology and infectious disease. AstraZeneca operates in over 100 countries and its innovative medicines are used by millions of patients worldwide.

Further information at: www.astrazeneca.com

Tuesday March 31st, 2015
LDC and HZI enter partnership for the discovery of new drugs against multi-resistant bacteria
Download PDF
Click here

LDC and HZI enter partnership for the discovery of new drugs against multi-resistant bacteria

The Lead Discovery Center GmbH (LDC) and the Helmholtz Centre for Infection Research (HZI) will be working in close cooperation to identify and optimize new drug candidates against methicillin-resistant Staphylococcus aureus (MRSA).

continue

Dortmund, 31 March 2015 – The Lead Discovery Center GmbH (LDC) and the Helmholtz Centre for Infection Research (HZI) will be working in close cooperation to identify and optimize new drug candidates against methicillin-resistant Staphylococcus aureus (MRSA).

MRSA are resistant to several traditional broad-spectrum antibiotics and therefore constitute a serious threat worldwide, particularly in hospitals and care homes for the elderly. They can cause serious illnesses, especially in patients with weakened immune systems, resulting in long periods of hospitalization, and in some cases, death. Based on data gathered by the German national hospital infection surveillance system (KISS), experts estimate the number of MRSA hospital infections to be approximately 14,000 per annum in Germany alone. Up to 2,000 patients die as a result of these infections each year.

©HZI/Rohde

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common and most dangerous hospital-acquired infections.

The LDC and the HZI are pooling their expertise to advance a new approach to combating MRSA developed at the HZI.  Their goal is to develop a drug that effectively blocks the establishment of an infection without actually killing the bacteria. ‘This strategy has two important advantages over traditional antibiotics,’ explains Prof. Mark Brönstrup, Head of Chemical Biology at the HZI. ‘First, we avoid further selective pressure that would inevitably lead to the development of new drug resistance.  Secondly, the drug would be better tolerated, as it wouldn’t affect the patient’s normal bacterial flora.’

The addressed therapeutic target has already been validated at the HZI in previous studies.  A drug aimed at this protein has the potential to inhibit a central infection mechanism of S. aureus.  In the first phase of the project, the LDC will screen their own substance library, together with the library supplied by the HZI, for compounds that selectively block the target structure. These hit compounds will be characterized in terms of their potency, selectivity and pharmacological properties, and then further optimized by the LDC in the second stage of the project. In parallel, the HZI will test the efficacy of optimized compounds against MRSA in a battery of biological model systems.

‘There is great potential in this cooperation,’ comments Dr. Bert Klebl, CEO of the LDC. ‘By pooling our expertise, experience and substance libraries we really have an excellent chance of identifying drug candidates, so-called ‘leads’, that are highly attractive to global pharma partners and that can be transferred directly to pharmaceutical drug development. Together, we can make a significant contribution in the fight against resistant bacteria.’ This is the second cooperation project between the LDC and a Helmholtz Centre. The first was launched at the end of last year in the field of oncology. Both projects receive financial support from the Helmholtz Validation Fund. The HZI is providing additional funding for the current project.

About the HZI

At the Helmholtz Centre for Infection Research in Braunschweig, scientists are studying microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases. The research site in Braunschweig-Stöckheim looks back at a long and successful history. The first laboratories opened in 1965, so the HZI is celebrating its 50th anniversary in 2015.

Further information at: www.helmholtz-hzi.de/en

Tuesday March 17th, 2015
Nature’s pharmacy – plant-based active substance kills renal cancer cells
Download PDF
Click here

Nature’s pharmacy – plant-based active substance kills renal cancer cells

Collaboration with the LDC to explore the development of a Englerin-A inspired cancer drug

Nature holds many compounds in store that are of great value to medical research. Recently, for example, scientists discovered that a substance contained in an African shrub kills cancer cells in the kidney. Together with colleagues from Berlin and Leeds, researchers from the Max Planck Institute of Molecular Physiology in Dortmund discovered that the molecule known as englerin A significantly increases the concentration of calcium in cells, causing the cancer cells to die. Englerin A only activates the calcium channels of renal cancer cells, but not those of healthy cells. In cooperation with the Lead Discovery Center in Dortmund, the scientists now want to find out whether englerin A could potentially be used as an innovative drug to treat renal cancer in the future.

continue

Collaboration with the LDC to explore the development of a Englerin-A inspired cancer drug

Dortmund, March 17, 2015 – Nature holds many compounds in store that are of great value to medical research. Recently, for example, scientists discovered that a substance contained in an African shrub kills cancer cells in the kidney. Together with colleagues from Berlin and Leeds, researchers from the Max Planck Institute of Molecular Physiology in Dortmund discovered that the molecule known as englerin A significantly increases the concentration of calcium in cells, causing the cancer cells to die. Englerin A only activates the calcium channels of renal cancer cells, but not those of healthy cells. In cooperation with the Lead Discovery Center in Dortmund, the scientists now want to find out whether englerin A could potentially be used as an innovative drug to treat renal cancer in the future.

In its native habitat in southern Africa, Phyllanthus engleri has long been known to have medicinal properties. The shrub or small tree, which was formerly classified as belonging to the spurge family, is most commonly found in the dry savannahs of Tanzania, Zambia, Malawi, Zimbabwe, Mozambique and South Africa. In Tanzania, for example, the plant’s roots are used to treat epilepsy, and chewing the leaves and fruits is said to alleviate coughs and stomach aches. A decoction made from the roots is even said to be effective against bilharziosis and gonorrhoea. At the same time, the plant also contains strong toxins that can cause lethal poisoning.
In 2009, American scientists isolated more than 30 substances found in Phyllanthus engleri and tested their efficacy on cancer cells. They discovered that a specific type of compound taken from the bark of the tree – a variant known as (–)-englerin A – is particularly effective against renal cancer cells and some other forms of cancer. That same year, the group led by Mathias Christmann, who now conducts research at the Freie Universität Berlin, synthesised this complex compound. The precursor they used is the primary constituent in the essential oil of catnip (Nepeta cataria): nepetalactone – a substance that causes cats to lapse into a state of ecstasy. Nepetalactone is therefore a renewable raw material extracted from a plant that is more readily available than Phyllantus engleri. This is decisive for the further use of englerin A, as it means that larger amounts of the substance can be produced.

However, exactly how englerin A kills cancer cells remained a mystery. Until recently, it was believed that englerin A might target a variant of the enzyme protein kinase C. The Max Planck scientists have now discovered though that cells that respond to englerin A particularly well do not contain this type of enzyme at all. Instead, the researchers focused on a family of calcium channels known as TRPCs (canonical transient receptor potential channels), which are found in the membranes of renal cells.
Different renal cancer cells form different numbers of these channels. The measurements showed that adding englerin A causes the calcium concentration inside these cells to rise so significantly that the cells die within a few minutes. “We studied cancer cells that produce a lot of TRPC4. These cells are particularly sensitive to englerin A. In cells that do not produce any TRPC4 or only produce normal amounts, the calcium levels do not rise as much. Therefore, these cells don’t die,” explains Slava Ziegler from the Max Planck Institute of Molecular Physiology. However, the researchers still do not know whether the overproduction of TRPCs is the sole cause of the dying off of the cancer cells.

Englerin A thus acts specifically on cancer cells in the kidney. “This property gives the substance a major advantage over other anti-cancer drugs, because it means the side effects afflicting healthy cells could possibly be prevented,” says Herbert Waldmann from the Max Planck Institute in Dortmund, where, among other topics, he conducts research into the use of naturally occurring substances in the development of active agents.

Together with the Lead Discovery Center in Dortmund, the researchers now want to determine whether englerin A is suitable as an anti-cancer drug. The Center, which was founded by the Max Planck Society, helps bring potential active agents from basic research to clinical trial. “Englerin A is a prime example of an active substance that harbours great potential, but also a significant risk. In the current phase there would be hardly any commercial partners willing to provide the funding for further studies. The Lead Discovery Center can bridge this gap between basic research and medicine,” says Waldmann.

LG/HR

Address: http://www.mpg.de
© 2003-2015, Max-Planck-Gesellschaft, München

Tuesday March 10th, 2015
LDC Receives 1 Million Euros from the Max Planck Foundation for the Development of New Drug Candidates
Download PDF
Click here

LDC Receives 1 Million Euros from the Max Planck Foundation for the Development of New Drug Candidates

The Lead Discovery Center (LDC) receives two grants of EUR 0.5 Million each for the development of two innovative drug discovery approaches for treating inflammation and cancer. The funds originate half-and-half from the Max Planck Foundation (MPF) and the Dr Helmut Storz Foundation, which is managed by the MPF.

continue

Dortmund, March 10, 2015 – The Lead Discovery Center (LDC) receives two grants of EUR 0.5 Million each for the development of two innovative drug discovery approaches for treating inflammation and cancer. The funds originate half-and-half from the Max Planck Foundation (MPF) and the Dr Helmut Storz Foundation, which is managed by the MPF.

“We are very pleased to have attracted Dr Helmut Storz as a sponsor for these two exciting projects,” says Dr Bert Klebl, CEO of the LDC. “His focus on translational research fits our mission perfectly, and the grants enable us to advance the designated projects to a stage where they can be channelled into pharmaceutical drug development.”

The first project is a new anti-inflammatory compound being jointly developed by the LDC, the Max Planck Institute of Microstructure Physics and the Max Planck Research Unit for Enzymology and Protein Folding. It targets a group of enzymes called cyclophilins, which play an important role in the development of acute inflammation. The first-in-class compound uses a novel and more targeted mode of action that could reduce the dosing requirements and side-effects associated with traditional cyclophilin inhibitors, which include immune suppression and kidney or liver damage. The project holds strong potential for the treatment of inflammatory diseases in cardiology and autoimmunity.

The second project addresses a highly innovative molecular target that plays a pivotal role in various cancer forms, including breast and ovarian cancer. The project will benefit from the LDC’s extensive know-how in the discovery of small molecule inhibitors for the enzyme class in question. The LDC will collaborate closely with the Center of Advanced European Studies and Research (Caesar), which is associated with the Max Planck Society.

Without this generous support, it would not have been possible to advance these projects into translational development. The goal is to identify an appropriate industry partner for each project at the end of the funding period to ensure further development towards the clinic. The LDC is particularly strong in linking academia and industry to effectively integrate the players in a collaborative drug discovery approach – as proven by the many successful partnerships the LDC has created with top research institutions and pharma companies across the world. In the event of a commercial success, licensing revenues will be shared between the LDC, the originating institutions and the supporting foundations.

About the Max Planck Foundation and the Dr Helmut Storz Foundation

The Max Planck Foundation (MPF) is a charitable foundation that finances outstanding and pioneering research projects from the Max Planck Society for the Advancement of Science (MPG). It is a public foundation under German civil law, and is supported by a nationwide initiative of private sponsors.

The Dr Helmut Storz Foundation was established previously to and independently from the MPF. It has been managed by the MPF since 2013. Its benefactor, Dr Storz, is particularly interested in scientific projects on the threshold of application, as very little public funding is available at this stage in their development. Projects are selected by the benefactor and the MPG in close consultation, and their quality is thoroughly examined.

Further information : www.maxplanckfoerderstiftung.org